Dans l’article “Qu’est-ce que la génération augmentée de récupération (RAG, retrieval-augmented generation) ?” je découvre l’acronyme Génération Augmentée de Récupération.

Je constate qu’il existe un paragraphe à ce sujet sur Wikipedia.

The initial phase utilizes dense embeddings to retrieve documents. (from)

Je tombe encore une fois sur “embeddings”,JaimeraisUnJour prendre le temps de comprendre correctement cette notion.

Prenez l’exemple d’une ligue sportive qui souhaite que les fans et les médias puisse utiliser un chat pour accéder à ses données et obtenir des réponses à leurs questions sur les joueurs, les équipes, l’histoire et les règles du sport, ainsi que les statistiques et les classements actuels. Un LLM généralisé pourrait répondre à des questions sur l’histoire et les règles ou peut-être décrire le stade d’une équipe donnée. Il ne serait pas en mesure de discuter du jeu de la nuit dernière ou de fournir des informations actuelles sur la blessure d’un athlète, parce que le LLM n’aurait pas ces informations. Étant donné qu’un LLM a besoin d’une puissance de calcul importante pour se réentraîner, il n’est pas possible de maintenir le modèle à jour. (from]).

Le contenu de ce paragraphe m’intéresse beaucoup, parce qu’en 2023, c’était l’objectif que j’avais en créant l’issue https://github.com/stephane-klein/backlog/issues/226.

Sans avoir fait de recherche, je pensais que la seule solution pour faire apprendre de nouvelles choses — injecter de nouvelle données — dans un modèle était de faire du fine-tuning.

En lisant ce paragraphe, je pense comprendre que le fine-tuning n’est pas la seule solution, ni même, j’ai l’impression, la “bonne” solution pour le use-case que j’aimerais mettre en pratique.

En plus du LLM assez statique, la ligue sportive possède ou peut accéder à de nombreuses autres sources d’information, y compris les bases de données, les entrepôts de données, les documents contenant les biographies des joueurs et les flux d’actualités détaillées concernant chaque jeu. (from])

JaimeraisUnJour implémenter un POC pour mettre cela en pratique.

Dans la RAG, cette grande quantité de données dynamiques est convertie dans un format commun et stockée dans une bibliothèque de connaissances accessible au système d’IA générative.

Les données de cette bibliothèque de connaissances sont ensuite traitées en représentations numériques à l’aide d’un type spécial d’algorithme appelé modèle de langage intégré et stockées dans une base de données vectorielle, qui peut être rapidement recherchée et utilisée pour récupérer les informations contextuelles correctes.

Intéressant.

Il est intéressant de noter que si le processus de formation du LLM généralisé est long et coûteux, c’est tout à fait l’inverse pour les mises à jour du modèle RAG. De nouvelles données peuvent être chargées dans le modèle de langage intégré et traduites en vecteurs de manière continue et incrémentielle. Les réponses de l’ensemble du système d’IA générative peuvent être renvoyées dans le modèle RAG, améliorant ses performances et sa précision, car il sait comment il a déjà répondu à une question similaire.

Ok, si je comprends bien, c’est la “kill feature” du RAG versus du fine-tuning.

bien que la mise en oeuvre de l’IA générative avec la RAG est plus coûteux que l’utilisation d’un LLM seul, il s’agit d’un meilleur investissement à long terme en raison du réentrainement fréquent du LLM

Ok.

Bilan de cette lecture, je dis merci à Alexandre de me l’avoir partagé, j’ai appris RAG etJePense que c’est une technologie qui me sera très utile à l’avenir 👌.


Tous les tags présents dans la note :