Recherche effectué dans :

Filtre actif, cliquez pour en enlever un tag :

Cliquez sur un tag pour affiner votre recherche :

Résultat de la recherche (35 notes) :

Journal du lundi 12 janvier 2026 à 09:36 #coding, #llm, #artificial-intelligence, #software-engineering

Il y a exactement 1 an, j'ai publié cette note pour citer ce message de Salvatore Sanfilippo, créateur de Redis :

About "people still thinking LLMs are quite useless", I still believe that the problem is that most people are exposed to ChatGPT 4o that at this point for my use case (programming / design partner) is basically a useless toy. And I guess that in tech many folks try LLMs for the same use cases. Try Claude Sonnet 3.5 (not Haiku!) and tell me if, while still flawed, is not helpful.

source

Aujourd'hui, je viens de lire son nouveau billet : Don't fall into the anti-AI hype (1106 commentaires sur HackerNews, 217 commentaires sur Lobsters).

Ces observations rejoignent ce que je constate avec OpenCode et les modèles Claude Sonnet 4.5 ou Claude Opus 4.5. Il me semble que "coder à la main" pourrait devenir un jeu, comme faire des sudoku ou jouer à des jeux vidéo. Pour le moment, je n'ai aucune idée de l'impact que cela aura sur mes capacités cognitives. J'ai l'impression que mes compétences pourraient décliner.

En fait, j'ai très peur de ne plus faire d'efforts de compréhension et qu'après quelques mois ou années, je devienne de plus en plus bête en déléguant systématiquement la réflexion à l'IA.

Voici cet article, traduit en français avec Claude Sonnet 4.5 :

Ne tombez pas dans le battage anti-IA

J'adore écrire du logiciel, ligne par ligne. On pourrait dire que ma carrière a été un effort continu pour créer des logiciels bien écrits, minimaux, où la touche humaine était la caractéristique fondamentale. J'espère également une société où les derniers ne sont pas oubliés. De plus, je ne souhaite pas que l'IA réussisse économiquement, je me fiche que le système économique actuel soit subverti (je pourrais être très heureux, honnêtement, si cela va dans la direction d'une redistribution massive de la richesse). Mais, je ne me respecterais pas moi-même et mon intelligence si mon idée du logiciel et de la société devait altérer ma vision : les faits sont les faits, et l'IA va changer la programmation pour toujours.

En 2020, j'ai quitté mon emploi pour écrire un roman sur l'IA, le revenu de base universel, une société qui s'adaptait à l'automatisation du travail en faisant face à de nombreux défis. À la toute fin de 2024, j'ai ouvert une chaîne YouTube axée sur l'IA, son utilisation dans les tâches de codage, ses effets sociaux et économiques potentiels. Mais bien que j'aie reconnu très tôt ce qui allait se passer, je pensais que nous avions plus de temps avant que la programmation ne soit complètement remodelée, au moins quelques années. Je ne crois plus que ce soit le cas. Récemment, les LLM de pointe sont capables de compléter de grandes sous-tâches ou des projets de taille moyenne seuls, presque sans assistance, avec un bon ensemble d'indices sur ce que devrait être le résultat final. Le degré de succès que vous obtiendrez est lié au type de programmation que vous faites (plus c'est isolé et textuellement représentable, mieux c'est : la programmation système est particulièrement adaptée), et à votre capacité à créer une représentation mentale du problème à communiquer au LLM. Mais, en général, il est maintenant clair que pour la plupart des projets, écrire le code soi-même n'a plus de sens, si ce n'est pour s'amuser.

Au cours de la semaine dernière, simplement en promptant, et en inspectant le code pour fournir des conseils de temps en temps, en quelques heures j'ai accompli les quatre tâches suivantes, en heures au lieu de semaines :

  1. J'ai modifié ma bibliothèque linenoise pour supporter l'UTF-8, et créé un framework pour tester l'édition de ligne qui utilise un terminal émulé capable de rapporter ce qui est affiché dans chaque cellule de caractère. Quelque chose que j'ai toujours voulu faire, mais il était difficile de justifier le travail nécessaire juste pour tester un projet personnel. Mais si vous pouvez simplement décrire votre idée, et qu'elle se matérialise dans le code, les choses sont très différentes.

  2. J'ai corrigé des échecs transitoires dans le test de Redis. C'est un travail très ennuyeux, des problèmes liés au timing, des conditions de deadlock TCP, etc. Claude Code a itéré pendant tout le temps nécessaire pour le reproduire, a inspecté l'état des processus pour comprendre ce qui se passait, et a corrigé les bugs.

  3. Hier, je voulais une bibliothèque C pure capable de faire l'inférence de modèles d'embedding de type BERT. Claude Code l'a créée en 5 minutes. Même sortie et même vitesse (15% plus lent) que PyTorch. 700 lignes de code. Un outil Python pour convertir le modèle GTE-small.

  4. Au cours des dernières semaines, j'ai effectué des modifications des mécanismes internes de Redis Streams. J'avais un document de conception pour le travail que j'ai fait. J'ai essayé de le donner à Claude Code et il a reproduit mon travail en, genre, 20 minutes ou moins (principalement parce que je suis lent à vérifier et à autoriser l'exécution des commandes nécessaires).

Il est tout simplement impossible de ne pas voir la réalité de ce qui se passe. Écrire du code n'est plus nécessaire pour la plupart. Il est maintenant beaucoup plus intéressant de comprendre quoi faire, et comment le faire (et, à propos de cette deuxième partie, les LLM sont aussi d'excellents partenaires). Peu importe si les entreprises d'IA ne pourront pas récupérer leur argent et que le marché boursier s'effondrera. Tout cela est sans importance, à long terme. Peu importe si tel ou tel PDG d'une licorne vous dit quelque chose de rebutant, ou d'absurde. La programmation a changé pour toujours, de toute façon.

Comment je me sens, à propos de tout le code que j'ai écrit qui a été ingéré par les LLM ? Je suis ravi d'en faire partie, parce que je vois cela comme une continuation de ce que j'ai essayé de faire toute ma vie : démocratiser le code, les systèmes, la connaissance. Les LLM vont nous aider à écrire de meilleurs logiciels, plus rapidement, et permettront aux petites équipes d'avoir une chance de rivaliser avec les plus grandes entreprises. La même chose que les logiciels open source ont fait dans les années 90.

Cependant, cette technologie est beaucoup trop importante pour être entre les mains de quelques entreprises. Pour l'instant, vous pouvez faire le pré-entraînement mieux ou pas, vous pouvez faire l'apprentissage par renforcement de manière beaucoup plus efficace que d'autres, mais les modèles ouverts, en particulier ceux produits en Chine, continuent de rivaliser (même s'ils sont en retard) avec les modèles de pointe des laboratoires fermés. Il y a une démocratisation suffisante de l'IA, jusqu'à présent, même si elle est imparfaite. Mais : il n'est absolument pas évident qu'il en sera ainsi pour toujours. J'ai peur de la centralisation. En même temps, je crois que les réseaux de neurones, à l'échelle, sont simplement capables de faire des choses incroyables, et qu'il n'y a pas assez de "magie" dans l'IA de pointe actuelle pour que les autres laboratoires et équipes ne rattrapent pas leur retard (sinon il serait très difficile d'expliquer, par exemple, pourquoi OpenAI, Anthropic et Google sont si proches dans leurs résultats, depuis des années maintenant).

En tant que programmeur, je veux écrire plus d'open source que jamais, maintenant. Je veux améliorer certains de mes dépôts abandonnés pour des raisons de temps. Je veux appliquer l'IA à mon workflow Redis. Améliorer l'implémentation des Vector Sets et ensuite d'autres structures de données, comme je le fais avec Streams maintenant.

Mais je m'inquiète pour les gens qui vont être licenciés. Il n'est pas clair quelle sera la dynamique en jeu : les entreprises vont-elles essayer d'avoir plus de personnes, et de construire plus ? Ou vont-elles essayer de réduire les coûts salariaux, en ayant moins de programmeurs qui sont meilleurs au prompting ? Et, il y a d'autres secteurs où les humains deviendront complètement remplaçables, je le crains.

Quelle est la solution sociale, alors ? L'innovation ne peut pas être annulée après tout. Je crois que nous devrions voter pour des gouvernements qui reconnaissent ce qui se passe, et qui sont prêts à soutenir ceux qui resteront sans emploi. Et, plus les gens seront licenciés, plus il y aura de pression politique pour voter pour ceux qui garantiront un certain degré de protection. Mais j'attends également avec impatience le bien que l'IA pourrait apporter : de nouveaux progrès en science, qui pourraient aider à réduire la souffrance de la condition humaine, qui n'est pas toujours heureuse.

Quoi qu'il en soit, revenons à la programmation. J'ai une seule suggestion pour vous, mon ami. Quoi que vous croyiez sur ce qui devrait être la Bonne Chose, vous ne pouvez pas la contrôler en refusant ce qui se passe actuellement. Éviter l'IA ne va pas vous aider, vous ou votre carrière. Pensez-y. Testez ces nouveaux outils, avec soin, avec des semaines de travail, pas dans un test de cinq minutes où vous ne pouvez que renforcer vos propres convictions. Trouvez un moyen de vous multiplier, et si cela ne fonctionne pas pour vous, réessayez tous les quelques mois.

Oui, peut-être pensez-vous que vous avez travaillé si dur pour apprendre à coder, et maintenant les machines le font pour vous. Mais quel était le feu en vous, quand vous codiez jusqu'à la nuit pour voir votre projet fonctionner ? C'était construire. Et maintenant vous pouvez construire plus et mieux, si vous trouvez votre façon d'utiliser l'IA efficacement. Le plaisir est toujours là, intact.

source

Journal du vendredi 09 janvier 2026 à 10:11 #artificial-intelligence, #llm, #benchmark, #JaiDécouvert

Dans Nouvelles sur l’IA de décembre 2025 #JaiDécouvert METR - Model Evaluation & Threat Research :

Claude Opus 4.5 rejoint la maintenant célèbre évaluation du METR. Il prend largement la tête (sachant que ni Gemini 3 Pro, ni ChatGPT 5.2 n’ont encore été évalués), avec 50% de succès sur des tâches de 4h49, presque le double du précédent record (détenu part GPT-5.1-Codex-Max, avec 50% de succès sur des tâches de 2h53). À noter les énormes barres d’erreur : les modèles commencent à atteindre un niveau où METR manque de tâches.

source

J'ai découvert AIChat, alternative à llm cli #artificial-intelligence, #llm, #cli, #JaiDécouvert, #JaimeraisUnJour

Dans ce thread, #JaiDécouvert AIChat (https://github.com/sigoden/aichat), une alternative à llm (cli) codée en Rust.

AIChat is an all-in-one LLM CLI tool featuring Shell Assistant, CMD & REPL Mode, RAG, AI Tools & Agents, and More.

source

En parcourant le README.md, j'ai l'impression que AIChat propose une meilleure UX que llm (cli).

Je constate aussi que AIChat offre plus de fonctionnalités que llm (cli) :

Ce qui attire le plus mon attention, c'est le sous-projet llm-functions qui, d'après ce que j'ai lu, permet de créer très facilement des tools en Bash, Python ou Javascript. Exemples :

J'ai hâte de tester ça 🙂 ( #JaimeraisUnJour ).

Par contre, llm-functions ne semble pas encore permettre la configuration de Remote MCP server.

Je suis aussi intéressé par cette issue : TUI for managing, searching, and switching between chat sessions.

Un point qui m'inquiète un peu : le projet semble peu actif ces derniers mois.

Ma lutte contre mon affaiblissement cognitif #artificial-intelligence, #opinion, #JaiLu

#JaiLu cet excellent billet de Tristan Nitot qui traite du processus de prolétarisation : L'IA fait elle de nous des prolétaires ?.

Il rejoint totalement ce que je disais dans ma note : J'utilise les LLMs comme des amis experts et jamais comme des écrivains fantômes.

Cela pose la question de la façon dont on aborde l’IA : peut-on profiter de l’IA sans y laisser son intelligence ?

source

À cette question, ma réponse imparfaite est celle-ci : j'essaie d'utiliser, autant que possible, les IA générative de texte comme un ami expert d'un domaine. J'essaie de ne jamais lui faire faire mon travail à ma place.

J'essaie de résister à l'injonction néolibérale d'effectuer chaque tâche le plus rapidement possible au nom de la rentabilité immédiate. Pour cela, tous les jours, j'essaie de trouver un équilibre entre la vitesse et prendre le temps de comprendre, de maîtriser les concepts et d'exécuter les gestes techniques. C'est loin d'être facile !

Pour lutter contre mon affaiblissement cognitif, j'essaie depuis quelques semaines d'intégrer Anki dans mes habitudes quotidiennes.
Mon objectif : créer une carte-mémoire pour chaque tâche que je délègue à un LLM alors que je devrais pouvoir l'accomplir moi-même.
Pour le moment, je n'ai pas la discipline pour respecter cet objectif, mais j'y travaille.

J'ai bien conscience que ma pratique est hétérodoxe. J'observe autour de moi que la tendance est la course à l'automatisation du maximum de tâches par l'IA. Je souhaite rester un artisan.


#JaiLu aussi le billet "Prolétarisation" de Carnets de La Grange.

Journal du samedi 05 juillet 2025 à 15:38 #llm, #AGI, #JaiÉcouté, #artificial-intelligence

Je viens d'écouter la dernière vidéo de Monsieur Phi : Comment parler intelligemment d'intelligence ?.

Comme toujours avec Thibaut Giraud, une vidéo qui donne matière à pensée.

Ce qui m'a particulièrement intéressé, c'est d'en savoir plus au sujet de ARC-AGI et ARC-AGI-2. Benchmark que j'avais découvert en décembre 2024.

J'ai passé un peu de temps à analyser le leaderboard de ARC-AGI : https://arcprize.org/leaderboard.

Voici le sommaire de cette vidéo :

  • 0:00 - Intro
  • 0:50 - Sponso NordVPN
  • 2:16 - Des étincelles d'intelligence générale dans GPT-4
  • 6:40 - Nous sommes médiocres en tout (et c'est très fort)
  • 9:21 - L'intelligence selon François Chollet
  • 11:52 - Les benchmarks usuels ne testent que la mémorisation 14:51 - ARC-AGI : un test de QI pour IA
  • 17:36 - Les LLM échouent lamentablement
  • 20:04 - Les modèles de raisonnement font une percée
  • 23:53 - Détour par d'autres benchmarks (Codeforces et Humanity's Last Exam)
  • 27:29 - Des progrès en maths : FrontierMaths et AlphaEvolve
  • 30:16 - Des CoT à n'en plus finir
  • 32:55 - ARC-AGI-2 le retour
  • 35:09 - Leaderboard actuel
  • 37:55 - Conclusion + outro

Journal du vendredi 20 juin 2025 à 16:37 #artificial-intelligence, #llm, #JaiDécouvert

#JaiDécouvert "Leaderboard des modèles de langage pour le français" : https://fr-gouv-coordination-ia-llm-leaderboard-fr.hf.space

C’est dans cette dynamique que la Coordination Nationale pour l’IA, le Ministère de l’Éducation nationale, Inria, le LNE et GENCI ont collaboré avec Hugging Face pour créer un leaderboard de référence dédié aux modèles de langage en français. Cet outil offre une évaluation de leurs performances, de leurs capacités et aussi de leurs limites.

source

Journal du vendredi 13 juin 2025 à 22:32 #MachineLearning, #artificial-intelligence, #open-source, #JaiDécouvert, #JaimeraisUnJour

Dans cette fonction filtre Open WebUI, #JaiDécouvert Detoxify (https://github.com/unitaryai/detoxify).

Trained models & code to predict toxic comments on 3 Jigsaw challenges: Toxic comment classification, Unintended Bias in Toxic comments, Multilingual toxic comment classification.

source

#JaimeraisUnJour prendre le temps de le tester.

Journal du mercredi 21 mai 2025 à 14:25 #artificial-intelligence, #llm, #NLP, #JaiDécouvert, #JaiLu

#JaiDécouvert le concept de LLM-as-a-Judge.

#JaiLu l'article Wikipédia à ce sujet "LLM-as-a-Judge".

"Abstract" du papier de recherche Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena datant du 24 décembre 2023 :

Evaluating large language model (LLM) based chat assistants is challenging due to their broad capabilities and the inadequacy of existing benchmarks in measuring human preferences. To address this, we explore using strong LLMs as judges to evaluate these models on more open-ended questions. We examine the usage and limitations of LLM-as-a-judge, including position, verbosity, and self-enhancement biases, as well as limited reasoning ability, and propose solutions to mitigate some of them. We then verify the agreement between LLM judges and human preferences by introducing two benchmarks: MT-bench, a multi-turn question set; and [[Chatbot Arena]], a crowdsourced battle platform. Our results reveal that strong LLM judges like GPT-4 can match both controlled and crowdsourced human preferences well, achieving over 80% agreement, the same level of agreement between humans. Hence, LLM-as-a-judge is a scalable and explainable way to approximate human preferences, which are otherwise very expensive to obtain. Additionally, we show our benchmark and traditional benchmarks complement each other by evaluating several variants of LLaMA and Vicuna. The MT-bench questions, 3K expert votes, and 30K conversations with human preferences are publicly available at https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge.

source

J'ai parcouru rapidement l'article "Evaluating RAG with LLM as a Judge" du blog de Mistral AI. Je n'ai pas pris le temps d'étudier les concepts que je ne connaissais pas dans cet article, par exemple RAG Triad.

J'ai effectué une recherche sur « LLM as Judge » sur le blog de Simon Willison.

Journal du samedi 01 mars 2025 à 17:03 #réseau-de-neurones, #MachineLearning, #artificial-intelligence, #JaiLu, #JaiDécouvert

J'ai passé une heure à lire l'article de LinuxFr : « Une intelligence artificielle libre est-elle possible ? ». J'y ai appris de nombreuses choses et je l'ai trouvé plutôt accessible. Merci à l'auteur https://linuxfr.org/users/liorel.

J'ai beaucoup aimé cette manière de présenter ce qu'est l'Intelligence artificielle :

Commençons par définir notre objet d’étude : qu’est-ce qu’une IA ? Par « intelligence artificielle », on pourrait entendre tout dispositif capable de faire réaliser par un ordinateur une opération réputée requérir une tâche cognitive. Dans cette acception, un système expert qui prend des décisions médicales en implémentant les recommandations d’une société savante est une IA. Le pilote automatique d’un avion de ligne est une IA.

Cependant, ce n’est pas la définition la plus couramment employée ces derniers temps. Une IA a battu Lee Sedol au go, mais ça fait des années que des ordinateurs battent les humains aux échecs et personne ne prétend que c’est une IA. Des IA sont employées pour reconnaître des images alors que reconnaître un chien nous semble absolument élémentaire, mais l’algorithme de Youtube qui te suggère des vidéos pouvant te plaire parmi les milliards hébergées fait preuve d’une certaine intelligence et personne ne l’appelle IA. Il semble donc que le terme « IA » s’applique donc à une technique pour effectuer une tâche plus qu’à la tâche en elle-même, ou plutôt à un ensemble de techniques partageant un point commun : le réseau de neurones artificiels.

Dans la suite de cette dépêche, j’utiliserai donc indifféremment les termes d’IA et de réseau de neurones.

source

J'ai bien aimé la section « Un exemple : la régression linéaire » 👌.

Je n'ai pas compris grand-chose à la section « Le neurone formel ». Elle contient trop d'outils mathématiques qui m'échappent, comme :

On ajoute un ensemble de neurones qu’on pourrait qualifier de « sensitifs », au sens où ils prennent en entrée non pas la sortie d’un neurone antérieur, mais directement l’input de l’utilisateur, ou plutôt une partie de l’input : un pixel, un mot…

source

#JaiDécouvert les neurones « sensitifs ».

Se pose alors la question : combien de neurones par couche, et combien de couches au total ?

On peut considérer deux types de topologies : soit il y a plus de neurones par couche que de couches : le réseau est plus large que long, on parlera de réseau large. Soit il y a plus de couches que de neurones par couche, auquel cas le réseau est plus long que large, mais on ne va pas parler de réseau long parce que ça pourrait se comprendre « réseau lent ». On parlera de réseau profond. C’est de là que viennent les Deep et les Large qu’on voit un peu partout dans le marketing des IA. Un Large Language Model, c’est un modèle, au sens statistique, de langage large, autrement dit un réseau de neurones avec plus de neurones par couche que de couches, entraîné à traiter du langage naturel.

source

Je suis très heureux de découvrir cette distinction entre profond et large. Je découvre que ces termes, omniprésents dans le marketing des IA, reflètent en réalité des caractéristiques architecturales précises des réseaux de neurones.

On constate empiriquement que certaines topologies de réseau sont plus efficaces pour certaines tâches. Par exemple, à nombre de neurones constant, un modèle large fera mieux pour du langage. À l’inverse, un modèle profond fera mieux pour de la reconnaissance d’images.

source

je peux assez facilement ajuster un modèle de régression logistique (qui est une variante de la régression linéaire où on fait prédire non pas une variable quantitative, mais une probabilité)

source

J'ai une meilleure idée de ce qu'est un modèle de régression logistique.

En définitive, on peut voir le réseau de neurones comme un outil qui résout approximativement un problème mal posé. S’il existe une solution formelle, et qu’on sait la coder en un temps acceptable, il faut le faire. Sinon, le réseau de neurones fera un taf acceptable.

source

Ok.

Posons-nous un instant la question : qu’est-ce que le code source d’un réseau de neurones ? Est-ce la liste des neurones ? Comme on l’a vu, ils ne permettent ni de comprendre ce que fait le réseau, ni de le modifier. Ce sont donc de mauvais candidats. La GPL fournit une définition : le code source est la forme de l’œuvre privilégiée pour effectuer des modifications. Dans cette acception, le code source d’un réseau de neurones serait l’algorithme d’entraînement, le réseau de neurones de départ et le corpus sur lequel le réseau a été entraîné.

source

👍️

Journal du jeudi 23 janvier 2025 à 14:37 #Inference, #artificial-intelligence, #JaiDécouvert

#JaiDécouvert Moshi (https://github.com/kyutai-labs/moshi).

Moshi is a speech-text foundation model and full-duplex spoken dialogue framework. It uses Mimi, a state-of-the-art streaming neural audio codec.

Moshi models two streams of audio: one corresponds to Moshi, and the other one to the user. At inference, the stream from the user is taken from the audio input, and the one for Moshi is sampled from the model's output. Along these two audio streams, Moshi predicts text tokens corresponding to its own speech, its inner monologue, which greatly improves the quality of its generation.

source

J'ai réussi à configurer Avante.nvim connecté à Claude Sonnet via le provider Copilot #iteration, #CodeAssistant, #artificial-intelligence, #neovim, #JaiDécidé

Note d' #iteration du Projet 21 - "Rechercher un AI code assistant qui ressemble à Cursor mais pour Neovim".


J'ai réussi à installer avante.nvim, voici le commit de changement de mon dotfiles : "Add Neovim Avante AI Code assistant".

Suite à la lecture de :

Since auto-suggestions are a high-frequency operation and therefore expensive, it is recommended to specify an inexpensive provider or even a free provider: copilot

source

et ma note 2025-01-12_2026, #JaiDécidé de connecter avante.nvim à GitHub Copilot.

J'ai suivi les instructions de README.md de avante.nvim et voici les difficultés que j'ai rencontrées.

Contexte : j'utilise lazy.nvim avec la méthode kickstart.nvim.

  • Ici j'ai appliqué cette configuration :
opts = {
	provider = "copilot",
	auto_suggestions_provider = "copilot",
	copilot = {
		model = "claude-3.5-sonnet"
	}
},
{
	"zbirenbaum/copilot.lua",
	config = function()
		require("copilot").setup({})
	end
},

Après installation des plugins (Lazy sync), il faut lancer :Copilot auth pour initialiser l'accès à votre instance de GitHub Copilot. C'est très simple, il suffit de suivre les instructions à l'écran.

Pour le moment, j'ai uniquement fait un test de commentaire d'un script : « Est-ce que ce script contient des erreurs ? » :

J'ai ensuite tenté de consulter mon rapport d'utilisation de GitHub Copilot pour vérifier l'état de mes quotas, mais je n'ai pas réussi à trouver ces informations :

D'ici quelques jours, je prévois de rédiger un bilan d'utilisation de avante.nvim pour faire le point sur mon expérience avec cet outil.

Journal du lundi 06 janvier 2025 à 12:35 #artificial-intelligence, #cloud-provider, #JaiDécouvert

#JaiDécouvert Vast.ai (https://vast.ai/) :

Vast.ai is the market leader in low-cost cloud GPU rental.
Use one simple interface to save 5-6X on GPU compute.

J'aimerais faire des Benchmarks de Inference Engines sur le serveur suivant à 14 $ par mois, qui contient une RTX 4090 avec 24 GB de Ram.

Journal du vendredi 03 janvier 2025 à 15:45 #RAG, #artificial-intelligence, #JaiDécouvert

Dans ce thread Hacker News, #JaiDécouvert le RAG kotaemon (https://github.com/Cinnamon/kotaemon).

J'ai fait un simple test sur "Live Demo", j'ai trouvé le résultat très intéressant :

Dans le README, #JaiDécouvert GraphRAG (https://github.com/microsoft/graphrag), nano-graphrag (https://github.com/gusye1234/nano-graphrag) et LightRAG (https://github.com/HKUDS/LightRAG).

J'ai compris que kotaemon peut fonctionner avec nano-graphrag, LightRAG et GraphRAG et que nano-graphrag était recommandé.

J'ai lu :

Support for Various LLMs: Compatible with LLM API providers (OpenAI, AzureOpenAI, Cohere, etc.) and local LLMs (via ollama and llama-cpp-python).

source

J'ai l'impression que kotaemon est un outil de RAG complet, prêt à l'emploi, contrairement à llama_index qui se positionne davantage comme une bibliothèque de plus bas niveau.

Dans le Projet 20 - "Créer un POC d'un RAG", je pense commencer par tester kotaemon.

Journal du mardi 27 août 2024 à 10:17 #neovim, #OnMaPartagé, #CodeAssistant, #artificial-intelligence, #JaimeraisUnJour

Alexandre m'a partagé avante.nvim.

#JaimeraisUnJour le setup pour le tester.

Cependant, une question me revient sans cesse à l'esprit en voyant ce genre d'outil utilisant les API d'AI Provider : est-ce que le coût d'utilisation de ce type de service ne risque pas d'être exorbitant ? 🤔
Je sais bien que ces AI Provider permettent de définir un plafond de dépenses, ce qui est rassurant. La meilleure approche serait donc de tester l'outil et d'évaluer les coûts mensuels pour voir s'ils restent raisonnables.

llm (cli) #python, #artificial-intelligence, #llm

Projet de Simon Willison :

A CLI tool and Python library for interacting with OpenAI, Anthropic’s Claude, Google’s Gemini, Meta’s Llama and dozens of other Large Language Models, both via remote APIs and with models that can be installed and run on your own machine.

source

Dépôt GitHub : https://github.com/simonw/llm

Voir aussi : AIChat

METR #benchmark, #llm, #artificial-intelligence

METR is a research nonprofit which evaluates frontier AI models to help companies and wider society understand AI capabilities and what risks they pose.

source

Dernière page.